Policy on Used Lead Acid Battery (ULAB) Management for Members of the Renewable Energy Association of Nigeria (REAN)
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB</td>
<td>Lead Acid Battery</td>
</tr>
<tr>
<td>ULAB</td>
<td>Used Lead Acid Battery</td>
</tr>
<tr>
<td>ESM</td>
<td>Environmental Sound Management</td>
</tr>
<tr>
<td>REAN</td>
<td>Renewable Energy Association of Nigeria</td>
</tr>
<tr>
<td>ARBR</td>
<td>Alliance for Responsible Battery Recycling</td>
</tr>
<tr>
<td>BCCC-Africa</td>
<td>Basel Convention Coordinating Centre for Training and Technology Transfer for Africa</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environmental Programme</td>
</tr>
<tr>
<td>FMoE</td>
<td>Federal Ministry of Environment</td>
</tr>
<tr>
<td>NESREA</td>
<td>National Environmental Standards and Regulations Enforcement Agency</td>
</tr>
<tr>
<td>REO</td>
<td>Renewable Energy Operator</td>
</tr>
<tr>
<td>EPR</td>
<td>Extended Producer Responsibility</td>
</tr>
<tr>
<td>PRO</td>
<td>Producer Responsibility Organisation</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>CE</td>
<td>Circular Economy</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>CONTENT</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>01</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td></td>
<td>1.1 Background</td>
</tr>
<tr>
<td></td>
<td>1.2 Justification of the REAN ULAB Policy</td>
</tr>
<tr>
<td></td>
<td>1.3 Objective of the REAN ULAB Policy</td>
</tr>
<tr>
<td></td>
<td>1.4 Current Practices in ULAB Management</td>
</tr>
<tr>
<td></td>
<td>1.5 Clean ULAB Management Process</td>
</tr>
<tr>
<td>02</td>
<td>POLICY, REGULATORY AND LEGISLATIVE FRAMEWORK</td>
</tr>
<tr>
<td></td>
<td>2.1 National Environmental (Electrical and Electronics Sector) Regulations 2013</td>
</tr>
<tr>
<td></td>
<td>2.2 Basel Convention National Management Plan for ULAB</td>
</tr>
<tr>
<td>03</td>
<td>POLICY OPTIONS FOR MANAGEMENT OF ULAB</td>
</tr>
<tr>
<td></td>
<td>3.1 Types of Policy Instruments</td>
</tr>
<tr>
<td></td>
<td>3.2 Extended Producer Responsibility</td>
</tr>
<tr>
<td></td>
<td>3.3 ULAB Take-Back Programme</td>
</tr>
<tr>
<td>04</td>
<td>RESPONSIBILITIES FOR MANAGEMENT OF ULAB</td>
</tr>
<tr>
<td></td>
<td>4.1 Responsibility of REAN</td>
</tr>
<tr>
<td></td>
<td>4.2 Responsibility of the Renewable Energy Operator</td>
</tr>
<tr>
<td></td>
<td>4.3 Responsibility of the Battery Producers</td>
</tr>
<tr>
<td></td>
<td>4.4 Responsibility of Battery Retailers and Dealers</td>
</tr>
<tr>
<td></td>
<td>4.5 Responsibility of the Customer</td>
</tr>
<tr>
<td>05</td>
<td>PUBLIC EDUCATION AND AWARENESS RAISING</td>
</tr>
<tr>
<td>06</td>
<td>GUIDELINES FOR COLLECTION AND TRANSPORTATION OF ULAB</td>
</tr>
<tr>
<td></td>
<td>6.1 Collection of ULAB</td>
</tr>
<tr>
<td></td>
<td>6.2 Transportation of ULAB</td>
</tr>
</tbody>
</table>

REAN ULAB Policy Statement 22
References 25
ANNEXES
Statement of Commitment 27
Used Battery Take-Back Contract 28
Chapter 1: Introduction

1.1 Background

Renewable Energy has great significance for Nigeria and has become the fastest growing electricity technology in the country. As the country adopts renewable energy and energy storage technologies, it has become imperative to develop and implement policies to further encourage and strengthen investments and sustainability in the sector. Lead Acid Batteries (LAB) are the most widely used energy storage systems in Nigeria and the safe management of used lead acid batteries (ULAB) are important both for human health and the environment.

Therefore, the United Nations Environmental Programme (UNEP) through the Basel Convention has recommended specific guidance and procedures for the safe collection, packaging, transportation, and recycling of ULAB, which Nigeria is a signatory. Environmentally Sound Management (ESM) of the Used Lead Acid Batteries (ULAB) has become an important responsibility for all stakeholders in the renewable energy sector, especially members of the Renewable Energy Association of Nigeria (REAN). Studies have shown that improper management of ULAB has led to high levels of lead (Pb) and sulfuric (battery) acid (H2SO4) pollution in our environment, with attendant negative health impacts, thus necessitating the need for a ULAB management policy for REAN members.

The Renewable Energy Association of Nigeria (REAN) is an affiliate member of the Alliance for Responsible Battery Recycling (ARBR), the licensed Producer Responsible Organisation (PRO) under the Extended Producer Responsibility (EPR) programme for the battery sector.

1.2 Justification of the Policy

Used Lead Acid Batteries (ULAB) contains hazardous substances such as lead (Pb) and sulphuric (H2SO4) which can pose a potential threat to human health and the environment if improperly disposed. Exposure to excessive levels of lead can cause damage to brain and kidney, impair hearing, and lead to other health problems. In 2017, it was estimated that lead exposure accounted for 1.06 million deaths and 24.4 million disability-adjusted life years (DALYs) due to long-term effects on health.

Nigeria has an organized informal system for ULAB collection and recycling. This current system fails to adhere to any environmentally sound principles in the handling, transportation, storage, and recycling procedures. The Nigeria ULAB value chain consists of used battery generators, scavengers, collectors and recyclers, but lack of standardized processes present a unique challenge for improving the entire value chain to meet the global benchmarks for Environmentally Sound Management of ULAB in Nigeria.

1.3 Aim of the Policy

The ULAB Policy aims to provide and support a sustainable ULAB management procedure and will require a change in behaviour and business practice by all Renewable Energy Operators (REOs) in Nigeria. The policy also creates an enabling investment climate for clean energy storage technologies as the industry continues to advance. This policy document is designed by REAN to align with all national policies, regulations, and guidelines of the Federal Ministry of Environment (FMoE) and the National Environmental Standards and Regulations Enforcement Agency (NESREA). The policy is designed as a guiding principle for the Environmentally Sound Management of ULAB for all REAN members. It spells out procedures that are necessary in ensuring clean and green practices for the renewable energy sector through a ULAB take-back scheme.
1.4 Current Practices in ULAB Management

Currently, renewable energy operators are not mandated to take-back used batteries from their customers. When they do take back the used batteries, they are sold to unregistered and unlicensed collectors or recyclers who discharge the battery acid contents into the environment without caution to health or the environment to reduce the weight of the in readiness for transportation. The used batteries are transported in unlicensed vehicles to a local recycler who manually breaks open the battery without the use of personal protective equipment (PPE) and recycles the lead contents in a dirty smelter that causes severe pollution of the soil, water and air with consequences on human health¹-⁴.

1.5 Clean ULAB Management Process

ULAB recycling is a recycling process that aims to reduce the number of waste batteries being disposed as municipal waste. Clean recycling is the process of ensuring that waste batteries are recycled with minimal negative impact to the environment and human health. ULAB are recycled by breaking, neutralizing the acid, separating the lead and plastic components, and recovering the materials for used in a variety of applications, including production of new batteries² ⁴.
Chapter 2: Policy, Regulatory and Legislative Framework

2.1 National Environmental (Electrical and Electronics Sector) Regulations 2011

The National Environmental (Electrical and Electronics Sector) Regulations of 2011 was made by NESREA with a principal thrust to prevent and minimize pollution from all operations and ancillary activities of the Electrical and Electronic Sector to the Nigerian Environment. These Regulations cover both new and used Electrical/Electronic equipment. Under Section 7 and 11 of the General Provisions of the Regulations, it spells out principles for implementing a Polluter Pays Principle and the Extended Producer Responsibility, including the Buy-Back programme as specified in Schedule VII to the Regulations.

2.2 Basel Convention on Transboundary Movement of Hazardous Waste and their Disposal

The Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal was adopted on 22 March 1989 by the Conference in Basel, Switzerland. The Basel Convention is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to developing countries and to ensure Environmentally Sound Management of ULABs within countries.

The Basel Convention Coordinating Centre for Training and Technology Transfer for the African Region (BCCC-Africa) was established in 1994 subject to the relevant provisions of the Framework Agreement between the Basel Secretariat and the Federal Government of Nigeria on the establishment of BCCC-Africa.

CHAPTER 03

POLICY OPTIONS FOR MANAGEMENT OF USED LEAD ACID BATTERIES (ULAB)
Chapter 3: Policy Options for Management of Used Lead Acid Batteries (ULAB)

3.1 Types of Policy Instruments

The appropriate mix of policy instruments must encourage all relevant stakeholders to change their behaviour and to take up their responsibility to meet the ULAB policy objectives. ULAB policy instruments can be categorised into the following 3 types:

(a) Regulatory Instruments - Comprising direct government policy, accompanied by credible enforcement.
(b) Economic Instruments - Market-based incentives and disincentives for specific unwanted behaviours and unsound recycling practices.
(c) Social Instruments – Collaborative and Information-based measures that rely on communication and interaction with the stakeholders to share the responsibility for product lifecycle management.

The REAN ULAB Policy is a Social Instrument designed to complement other regulatory and economic instruments by the Federal Ministry of Environment and NESREA

3.2 Extended Producer Responsibility (EPR)

Extended Producer Responsibility (EPR) is the act of minimizing health, safety, environmental, and social impacts, and maximizing economic benefits of a product throughout all lifecycle stages, from manufacturing, usage and end-of-life.

The producer of the product has the greatest ability to minimize adverse impacts, but other stakeholders, such as suppliers, retailers, government, recyclers, and consumers, may also play a role. Extended Producer Responsibility can be implemented through either voluntary programs or legal instruments.

The National Environmental Standards and Regulations Enforcement Agency (NESREA) has licenced the Alliance for Responsible Battery Recycling (ARB) as the Producer Responsibility Organisation to implement the EPR programme for the battery sector. The ARB is responsible for registration of all new and used battery producers, collectors, and recyclers.

3.3 ULAB Take-Back Programme

A ULAB “Take Back Programme” is an initiative organized by a manufacturer or retailer of Lead Acid Batteries (LAB) to collect used batteries from customers and reintroduce them to the approved recycling process and manufacturing cycle. The take-back programme is a main component to the environmental model called the Circular Economy (CE).
There are multiple benefits for implementing a take-back programme for Renewable Energy Operators, including:

- Stronger Customer Relationship
- Reduced Environmental Impact
- Mitigated Risks Associated with Hazardous ULAB Handling
- Reduced Environmental Impact
- Mitigated Risks Associated with Hazardous ULAB Handling

“The producer of the product has the greatest ability to minimize adverse impacts, but other stakeholders, such as suppliers, retailers, government, recyclers, and consumers, may also play a role”
CHAPTER 04

RESPONSIBILITIES FOR MANAGEMENT OF USED LEAD ACID BATTERIES (ULAB)
Chapter 4: Responsibilities for Management of Used Lead Acid Batteries (ULAB)

4.1 Responsibilities of REAN

(a) REAN shall develop internal policies for its members in the management of ULAB and work towards attaining the common objectives of its members in environmental sustainability.
(b) REAN shall endeavors to promote research and development relating to ULAB management, to disseminate the results, and take other necessary measures to ensure sound recycling of ULAB.
(c) REAN shall, through educational and publicity activities, endeavor to increase the public understanding of the hazards of improper ULAB management and to ask for public cooperation for the implementation of procedures for the effective collection and recycling of ULAB.

4.2 Responsibility to Take-Back ULAB by the Renewable Energy Operator

(a) The Renewable Energy Operator shall be responsible for implementing a take-back contract with the customer to collect all end-of-life batteries installed for off-grid and small home systems by the operator.
(b) The Renewable Energy Operator shall sign the take-back contract with the customer before installation and will be available to take-back the ULAB at End-of-Life.
(c) The Renewable Energy Operator shall provide regular data on quantities of batteries installed, location of installations, types of batteries installed.
(d) Renewable Energy Operators shall deliver all used batteries to collectors or recyclers registered by the Alliance for Responsible Battery Recycling (ARBR).
(e) REAN members shall commit to abide by the REAN ULAB Policy.

4.3 Responsibility of the Battery Producers

(a) Battery Producers (Manufacturers and Importers) have a responsibility to support the collection of end-of-life batteries for recycling and production of new batteries. Manufacturer must ensure safe work practices during production and must label the batteries in order for their purpose to be clear and for consumers to know the hazardous contents so as to avoid exposure to contamination.

4.4 Responsibility of Battery Retailers and Dealers

(a) Battery retailers and dealers have a responsibility to ensure that batteries being sold to Nigerians are properly labeled as containing hazardous materials. Often, the battery retailer or dealer also provides collection or drop off services for consumers seeking to dispose of their end-of-life batteries.

4.5 Responsibility of the Customer

(a) The renewable energy customer shall take care to purchase rechargeable and recyclable batteries, using them safely according to instructions, taking care not to damage them during use, keeping them out of reach of children.
(b) The customer shall sign a take-back contract with the renewable energy operator to return the used lead acid battery back to the operator for safe recycling to avoid the likelihood of illegal disposal of such batteries to an unlicensed local collector or recycler.
Chapter 5: Public Education and Awareness Raising

There is very often a lack of public awareness on the economic value of used Lead-acid battery (ULAB) and on their potential negative environmental and health impacts if improperly managed. Sustained education and awareness-raising campaigns are therefore essential to encourage individuals and business to adopt sound management practices.

REAN shall promote campaigns to cover awareness on:

- Standardization of Lead Acid Batteries (LAB) in Nigeria to ensure the long lifespan of LAB to prevent high number of Used Lead Acid Batteries (ULAB) generation.
- Environmental and health risks associated with inappropriate handling.
- The Economic value of ULAB.
- Environmentally sound collection and recycling options and providing information on the collection and recycling systems to encourage holders of ULAB to participate by returning their ULAB to their LAB supplier.

“Sustained education and awareness-raising campaigns are essential”
CHAPTER 06

COLLECTION AND TRANSPORTATION OF ULAB BY BASEL CONVENTION GUIDELINES
Chapter 6: Collection and Transportation of ULAB by Basel Convention Guidelines

6.1 COLLECTION OF ULAB

Pre-Recycling Steps
Before reaching the recycling plant, used batteries must be collected and transported safely to avoid adverse health effects and environmental contamination. Since these procedures are not performed inside the recycling facility, they are denominated pre-recycling steps.

ULAB Collection
The only way to implement a successful used lead-acid battery (ULAB) recycling program is to install an efficient collection infrastructure for ULAB. This infrastructure must be well planned since it involves different stakeholders such as scrap dealers, battery dealers, secondary lead processors and the end-users into an organized network which provides a continuous supply of ULAB for the recycling process.

Experience has shown that, as a general trend, the most spontaneous process of ULAB collection occurs through the dual system of 'distribution-collection' in which the manufacturers, retailers, wholesalers, service stations or other retailing points provide new batteries to end-users and collect the used batteries which is forwarded to recycling plants. This process has its viability based on the economic value associated with the lead content of ULAB. This collection process ensures environmentally sound management of ULAB, however, there is a need for control measures at the collection points to avoid risky practices that are detrimental to health and the environment. The control measures are:

A. batteries should not be drained at collection points:
Except for a few dry batteries that may arrive at the collecting point, almost all used batteries will retain its sulfuric acid electrolyte. The drainage of this liquid may pose several threats to the human health and to the environment:
- Acid contains high lead levels, as soluble ions, and particulate forms.
- Acidity level in ULAB is high and may cause burns and damage if accidentally spilled.
- Requires special acid resistant containers for storage.
- Drainage requires workers to be protected to minimize any risk of injury.

Thus, battery drainage may be considered a potentially hazardous activity that demands special tools, containers and safety equipment, and trained personnel. Since these requirements may often be lacking, which increases the risk of an accident; the drainage of acid at collection points should be avoided.

B. batteries must be stored in proper places at collection points:
The ideal place to store used lead-acid batteries is inside an acid-resistant container that may simply be sealed and used as the transport container as well minimizing the risk of an accidental spillage. However, this is not often the case and the following short set of storage guidelines should be adopted:
(a) leaking batteries, i.e. those spilling electrolytes, must be stored inside acid-resistant containers otherwise they will contaminate the environment and may cause health effects.

(b) Storage place must be sheltered from rain and other water sources, be equipped with a water collection system, and away from heat sources.

(c) Storage place must have a ground cover, preferably acid resistant concrete, or any other acid-resistant material, that may retain any leakage and direct it to a collecting container from where it can be removed afterwards.

(d) Storage place must have an exhaust ventilation system, or simply a fast air recirculation system to avoid hazardous gas accumulation.

(e) Storage place must have a restricted access and be identified as a hazardous material storing place.

Although these are general considerations, and specific problems and demands may arise within each establishment, they provide a basic set of measures that decrease the accident chances and provide a protected environment for used batteries storage.

C. Collection points must not store large amounts of used batteries:
At the storage place, a collection point should not store a large number of used batteries and must not be considered as a permanent storage place. The right storage amount depends, on the trade rate of the establishment and the storage place must be dimensioned to provide enough space for specific demands. Nevertheless, storing large amounts of used batteries for a long time, increases the risk of accidental spillage or leakage and this must be avoided.

D. Collectors must not sell their batteries to unlicensed lead smelters:
Since unlicensed (informal) smelters are the main sources of lead contamination in the environment, which consequently affects health of the public, it should be stressed that collection points must not sell or send their used batteries to establishments that do not follow high safety standards.

6.2. TRANSPORTATION OF ULAB

Used lead-acid batteries must be considered as hazardous wastes when transport is needed. Again, the main problem associated with battery transport is the electrolyte (battery acid), which may leak from used batteries, requiring control measures in order to minimize the risk of spillage and define the specific actions to be taken in event of an accident:

A. Used batteries must be transported inside containers:
No matter which mode of transport is being used, i.e. boat, train, etc., used lead-acid batteries must be transported inside sealed containers due to the risk of leakage, which may be high even if the batteries are appropriately transported in upright position. During transport, the positions of the batteries may change from their original positions, the containers may break or turned upside down, which will certainly leak the electrolyte content; therefore, it is important to provide a shock resistant and acid resistant sealed container.
B. Containers must be well packed to the transport vehicle:
The containers should not be allowed to move while on transit. Therefore, they must be bound, shrink wrapped or stacked tightly to avoid movement.

C. The transport vehicle should be identified with symbols:
The vehicle, whether it is a ship a truck or a van must be correctly labelled identified, following international conventions, symbols and colours, identifying the fact that corrosive and hazardous batteries are being transported.

D. Specific equipment:
A minimum set of equipment necessary to combat any simple spillage or leakage problems should be provided and the transport team trained on how to use it.

E. Drivers and auxiliaries should be trained:
People dealing with hazardous wastes should always be trained in emergency procedures, including fire, spilling, etc. and how to contact emergency response teams. Besides this, they should be aware of the specific kind of hazardous material is being transported and how to deal with it.

F. Personal protection equipment (PPE):
PPE should be provided for the transport team and they should be trained in the use of the equipment, in case of any accident.

G. Transport schedule and map:
Hazardous waste transport should always choose routes that minimize the risk of possible accidents or other specific problems. This is made possible if they follow a certain predefined path and restrict themselves to a known schedule.
REAN ULAB Policy Statement
REAN ULAB Policy Statement

1. The policy shall be known and referred to as the 'Renewable Energy Association of Nigeria (REAN) Used Lead Acid Battery (ULAB) Policy' or a short title 'REAN ULAB Policy.'

2. This Policy reaffirms REAN members' commitment to sustainable management of ULAB, see annex 1.

3. REAN shall endeavor to promote research and development relating to ULAB management, to disseminate the results, and take other necessary measures to ensure sustainable recycling of ULAB.

4. REAN will organize regular education and training programs to update members on new battery technologies and management of ULAB.

5. REAN will support her members to comply with government regulations and provide interventions were possible in safe handling of ULAB.

6. Battery Producers, Manufacturers, Importers, Retailers, and Dealers shall support the ULAB take-back scheme by providing designated collection points labelled

![Used Battery Collection Point](image)

7. Battery manufacturers must ensure safe work practices during production and must clearly list the hazardous contents on labels.

8. Renewable Energy Operator shall be responsible for direct collection of ULAB from end users (customers)

9. The Renewable Energy Operator shall sign a take-back contract with the customer before installation in triplicate. A copy for the customer, and two copies to be kept with the operator, see annex 2.

10. A copy of the triplicate signed take-back contract should be submitted to REAN for data collection.

11. Renewable Energy Operator have the responsibility to ensure safe delivery of ULAB to Registered Collectors or Recyclers.
12. ULAB must be tightly packed and transported inside leak proof containers.

13. The transport vehicle must be labelled with the hazardous sign and colours.

14. Drivers and auxiliaries staff members must be trained on safe handling of hazardous materials like ULAB in case of any accident during transportation.

15. Appropriate personal protection equipment (PPE) should be used when handling ULAB.

16. Hazardous waste transport should always choose routes that minimize the risk of possible accidents.

17. In case of accidental environmental pollution during transportation or handling of ULAB, the Alliance for Responsible Battery Recycling (ARBR) should be immediately notified at info@batteryallince.com.ng.
References

1. Heinrich Boell Stiftung Nigeria (2018); Africa’s Challenge with Used Lead Acid Batteries (ULAB) – Can Nigeria take the Lead

3. Isaac Anyaogu (2017); Business Day; Nigeria’s N85 billion used lead acid battery market eludes regulation. https://businessday.ng/exclusives/article/nigerias-n85-billion-used-lead-acid-battery-market-eludes-regulation/

8. World Health Organization (2019); Preventing Disease Through Healthy Environments Exposure to Lead: A Major Public Health Concern who.int/iris/bitstream/handle/10665/329953/WHO-CED-PHE-EPE-19.4.7-eng.pdf?ua=1

Annexes
Annex 1

Statement of Commitment
Environmentally Sound Management (ESM) of Used Lead Acid Batteries (ULAB)

(......Enter Organisation Name.......................) has reviewed the content of the REAN ULAB Policy and acknowledges that the Policy represents a set of principles generally recognised as good practice in the Environmentally Sound Management of Used Lead Acid Batteries, according to the regulations and guidelines guiding the sector.

The organisation confirms that it acts as a Renewable Energy Operator and is committed to conducting its operations in a manner consistent with the principles of the REAN ULAB Policy for Environmentally Sound Management of Used Lead Acid Batteries.

Date: ___
Name: __
Signature: _______________________________________

REAN Used Lead Acid Batteries (ULAB) Policy
Annex 2

Date: ____________ S/N: __________

Used Battery Take-Back Contract

Batteries contain hazardous substances such as acid, lead, nickel, lithium, cadmium, alkaline, mercury and nickel metal hydride. When batteries are not properly disposed or recycled, the toxic chemicals can pollute the surrounding environment with serious implications for human health.

To avoid this situation, the Customer has a responsibility to return used batteries to the renewable energy operator who sold or installed the batteries at the property. The renewable energy operator has a responsibility to take-back these batteries and safely deliver to registered and licensed battery collectors or recycling companies.

Please fill out the contract as a commitment to help protect the Nigerian environment from pollution, by not selling your used batteries to unregistered and unlicensed used battery collectors or recyclers.

Please check the Renewable Energy Association of Nigeria (REAN) www.rean.org.ng or the Alliance for Responsible Battery Recycling (ARBR) www.batteryalliance.com.ng for a list of registered used battery collectors or recyclers in Nigeria.

Customer's Name: ___

Customer's Phone Number: __

Email Address: __

Property Address: ___

Number of Batteries Installed: __

Type of Batteries: ________________________________ AH(Size):__________________

Brand of Batteries: ___

Years of Battery Guarantee: __

Renewable Energy Operator: __

Phone Number of Operator: ___

Email of Operator: ___

I understand the importance of this used battery take-back responsibility and commit to the Environmentally Sound Management of Batteries in Nigeria.

_____________________________ _______________________________
Customer Signature Renewable Energy Operator Signature
The Renewable Energy Association of Nigeria (REAN) is an independent, non-profit Industry association founded by stakeholders in the Renewable Energy sector in Nigeria. REAN is dedicated to the promoting the growth and development of the industry in Nigeria by engaging with the public and private sector to guide advocacy, policy formulation and investment in the sector.

The Mission of the Association is "to be the umbrella association for all Renewable Energy promoters enabling and encouraging the sustainable development of the Nigerian economy through Renewable Energy".

Our Vision is "to promote strategies that will improve the contribution of renewable energy up to forty percent (40%) of the National Energy Mix by 2030"

- The Objectives of REAN as Stated in the Constitution are.
 - To promote Nigerian Local content in the renewable energy industry.
 - To promote the interests of members of the Renewable energy industry among Government, Donor organizations, Non-governmental organizations, General Public and any other organizations that may impact on the development and general well-being of the industry.
 - To create a forum for the dissemination and exchange of information and ideas on matters relating to renewable energy development and utilization in Nigeria.
 - To create increased public awareness in renewable energy through publications, advertisements, endorsements, seminars, conferences, advertising and promotional campaigns of any nature.
 - To assist the Government and industry on all issues related to renewable energy technologies including energy policy formulation, standards, taxation etc and speak as one body for Renewable Energy Technologies in Nigeria.
 - To identify and keep up to date contacts of all members, government policy makers, and other renewable energy interest groups, associations and a database of projects.
 - To promote professionalism in the industry by encouraging the adoption of good engineering practices, standards and certification systems (quality products, design, installation and maintenance) among the members of the renewable energy industry.
 - To encourage better and healthy business practices and tendering procedures by maintaining good ethical and moral standards among the members of the renewable energy industry.
 - To undertake or assist in mediation of disputes between the members of the association, the public in general and consumers of renewable energy as well as any organizations directly or indirectly affected by renewable energy utilization.
 - To act as a link between the industry, the government, consumer groups, international organizations, and other renewable energy associations.
 - To protect the consumers of renewable energy products and services in all aspects especially by encouraging the standardization of renewable energy equipment, components and services such as installation and maintenance.
 - To apply for, acquire and hold charters, legislation, privileges, monopolies, licenses, concessions, patents or other rights or powers from the Nigerian Government or local authorities or any other statutory body and to exercise, carry on and use, any powers, rights or privileges so obtained.